
HPE Application
Tuner Express (HPE-ATX):
Launching Applications on
NUMA Nodes and CPUs
Version: 1.0.4
June 2025

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

What is HPE-ATX?

• Utility that makes NUMA unaware applications more NUMA
aware

– No application changes are needed!

• Controls the distribution of an application’s processes and
threads in a NUMA environment

– Several NUMA node and CPU Launch Policies are provided to
obtain an optimal distribution

• HPE-ATX vs numactl:

– numactl constrains an application to a set of NUMA nodes

– HPE-ATX distributes an application around a set of nodes

• Benefit of HPE-ATX varies by platform and application

– Higher socket count platforms benefit more than lower socket
count platforms

– NUMA-unaware applications benefit more than applications built
with NUMA awareness

2

3

ATX Launch Policies

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

4

ATX Process and Thread Launch Policies

– Launch Policies control how an application’s processes and threads are distributed among the NUMA
nodes on the system

– There are both process launch policies and thread launch policies.

– The process and thread policies do not have to be the same type in an application.
• Process launch policies govern the NUMA affinity of a child process created from fork(), vfork(), etc.

• Thread launch policies govern the NUMA affinity of a sibling thread created from pthread_create(), clone(), etc.

– Launch policies are inherited by a process or thread from it’s creator.

– Launch policies are also inherited across an exec call when starting a new executable image.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

5

ATX Launch Policy types

There are 6 basic launch policy types (available for both processes and threads):

– Round-Robin (RR): Each time a process (or thread) is created it will be launched on the next NUMA node in the list
of available nodes. This ensures even distribution across all nodes

– Fill-First (FF): Each time a process (or thread) is created it will be launched the same NUMA node until we have
created the same number of processes (or threads) in the node as there are CPUs in that node (<ncpu>). Once
<ncpu> processes have been created future creation will take place in the next NUMA node.

– Packed (Pack): All processes (or threads) will be launched on the same NUMA node

– RR-Packed: Only the direct children of the specified command will be launched among the available numa nodes in
a round-robin manner. Any processes created by the direct children will inherit their launch node from their creator
but will not implement process launch policies (essentially all processes created by a direct child of the specified
command will be packed into the same numa node).

– Memfree: Processes (and threads) will be launched in a round-robin manner until free memory in each numa node
is less than a specified percentage, after which processes (and threads) will be launched on the numa node
containing the most free memory.

– None: No launch policy is defined. Any child process or sibling thread that is created will inherit any NUMA affinity
constraints from it’s creator.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

6

Process Launch Trees

– The process launch tree is the set of processes that the process launch policy should be applied to.

– The initial process started by ATX (as specified by the user) forms the root of a process launch tree.

– Tree-based policies:

• All processes created by the initial process or any of it’s descendants, regardless of how deep the parent/child tree
is, are in the same launch tree.

• All processes will be launched relative to one another in the order they are created according to the launch policy
specified.

– Flat-based policies:

• The initial process and only its direct children form a launch tree. The initial process and it’s direct children will be
launched relative to one another in the order they are created according to the launch policy specified.

If one of the children, e.g. child A, creates another process then child A becomes the root of a new process launch
tree. All of the direct children of child A will be launched relative to one another in the order they are created
according to the launch policy specified.

– Packed-based policies:

• All processes and their children will be packed into one node, regardless of whether that node becomes
overloaded.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

7

Launch Policy: Sample parent/child tree

Processes are created in the order specified (the process number in each box)

Initial ProcessProcess 1

Process 2 Process 3 Process 9 Process 10 Process 14 Process 17Process 4

Process 5 Process 6 Process 13Process 7

Process 8 Process 11 Process 12 Process 15 Process 16 Process 18

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

8

Launch Policy: Process RR-Tree example

Nodes 1-6 available. Processes are created in the order specified. Node # is the resulting node affinity

Initial Process / Root of Tree for all childrenProcess 1
Node 1

Process 2
Node 2

Process 3
Node 3

Process 9
Node 3

Process 10
Node 4

Process 14
Node 2

Process 17
Node 5

Process 4
Node 4

Process 5
Node 5

Process 6
Node 6

Process 13
Node 1

Process 7
Node 1

Process 8
Node 2

Process 11
Node 5

Process 12
Node 6

Process 15
Node 3

Process 16
Node 4

Process 18
Node 6

Launch tree

Launch Counts

 Node 1: 3

 Node 2: 3

 Node 3: 3

 Node 4: 3

 Node 5: 3

 Node 6: 3

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

9

Launch Policy: Process RR-Flat example

Nodes 1-6 available. Processes are created in the order specified. Node # is the resulting node affinity

Initial Process / Root of Tree only for direct childrenProcess 1
Node 1

Process 2
Node 2

Process 3
Node 3

Process 9
Node 5

Process 10
Node 6

Process 14
Node 1

Process 17
Node 2

Process 4
Node 4

Process 5
Node 5

Process 6
Node 6

Process 13
Node 2

Process 7
Node 1

Process 8
Node 2

Process 11
Node 3

Process 12
Node 4

Process 15
Node 5

Process 16
Node 6

Process 18
Node 1

Launch tree

Launch Counts

 Node 1: 4

 Node 2: 4

 Node 3: 2

 Node 4: 2

 Node 5: 3

 Node 6: 3

Launch tree

Launch tree

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

10

Launch Policy: Process RR-PACK example

Nodes 1-6 available. Processes are created in the order specified. Node # is the resulting node affinity

Initial Process / Root of Tree only for direct childrenProcess 1
Node 1

Process 2
Node 2

Process 3
Node 3

Process 9
Node 5

Process 10
Node 6

Process 14
Node 1

Process 17
Node 2

Process 4
Node 4

Process 5
Node 4

Process 6
Node 4

Process 13
Node 4

Process 7
Node 4

Process 8
Node 4

Process 11
Node 4

Process 12
Node 4

Process 15
Node 4

Process 16
Node 4

Process 18
Node 4

Launch tree

Inherited
Node Affinity

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

11

Launch Policies and the Initial Thread

– Single threaded, or non-threaded, processes still have a single thread (of control) – the initial/main
thread.

– When a process is created it is governed by the process launch policy. This policy is applied to the
initial/main thread of the process.

– When the process creates it’s first thread (this is really the second thread since the initial/main thread of
the process was the first thread) the thread launch policy of the process takes effect for thread creation.

– However, the initial/main thread already has already been assigned a launch node according to the
process launch policy. This launch node is not changed.

• Instead, this node is used as the starting node to implement the specified thread launch policy for all threads
created by this process.

• If no thread launch policy was specified all created threads will inherit the launch node from their process.

 If a process policy is specified, but no thread policy is specified, the thread policy essentially defaults to the pack policy
due to the inheritance rules.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

12

Thread Launch Policies: Tree vs Flat

– A tree-based thread policy applies to all threads created by the initial process and any of its
descendants, regardless of how deep the parent/child tree is (the same as process tree policies).
• All threads in the process launch tree are launched relative to one another according to the specified thread

launch policy.

– A flat-based thread policy applies only to the threads inside a single process.
• All threads of a single process are launched relative to one another according to the specified thread launch

policy.

• Each process manages its own flat-based thread launch tree.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

13

CPU Launch Option

– ATX also has a CPU Launch option

– You must specify a process or thread NUMA launch policy when using the CPU launch option

– ATX will first determine the launch node according to the specified process or thread NUMA launch policy

– Once the launch node has been selected ATX will select a specific CPU within that node to launch the
process or thread

– CPU selection is round-robin within the node.

14

ATX Command Line Options

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

ATX Semantics

15

hpe-atx [options] [--] command [command arguments ...]

Options are:

 -p <policy>, --process=<policy>
 Set the process launch policy to <policy>.
 <policy> can be one of:

 rr_tree rr_flat ff_tree ff_flat rr_pack memfree_tree memfree_flat pack none

 -t <policy>, --thread=<policy>
 Set the thread launch policy to <policy>.
 <policy> can be one of:
 rr_tree rr_flat ff_tree ff_flat memfree_tree memfree_flat pack none

 -c, --cpu
 Also apply the CPU launch policy after determining the
 launch node based on the process or thread launch policy

 -n <node-list>, --nodes=<node-list>
 Only use the nodes specified in <node-list> which is
 in the format of "2-4", "1,3,5", or "1,3,6-8“ (same format as numactl)
 (the default is the current node affinity)

 -m <limit>, --memfree=<limit>
 limit is a number from 0 to 100 representing the percent of free memory when the memfree policy
 should switch from rr to memfree (the default is 50)

 -l <log-file>, --log=<log-file>
 Enable logging of process and thread creation (the default is no logging)

 -e <error-file>, --error=<error-file>
 Write any errors encountered to this file also

 -r, --remove-data-files
 Remove any old leftover data files from previous invocations of hpe-atx

 -w, --write-by-other
 Log and data files will be created with writer permission by “others”

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

ATX Semantics – License Options

16

hpe-atx [options]

Options are:

 -i, --license-instant-on
 Install the free 60-day trial license. This operation is
 performed automatically when hpe-atx is installed.
 This option cannot be used with other options.

 -s, --license-status
 Display information on the currently installed valid hpe-atx license.
 This option cannot be used with other options.

 -S, --license-status-all
 Display information on all currently installed valid hpe-atx licenses.
 This option cannot be used with other options.

 -a <license-file>, --license-add=<license-file>
 Apply the license specified in <license-file> to hpe-atx. This option
 cannot be used with other options. This option requires system
 administrator (root) privileges.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

17

Initial Launch Nodes Option: -n and --nodes

– By default ATX will use all nodes available from its node affinity when it starts.

• ATX will adhere to any previous NUMA node affinity through numactl or cpusets.

– The application to launch may be constrained to a smaller set of NUMA nodes by using the
-n <node-list> or --nodes=<node-list> option.

• For example, on a 16-processor system the application may need to be constrained to 8-processors

– <node-list> has the same format as a node list for the numactl command:

• "1" or "1,2,3" or "1-3" or "1,3-5" or "1-3,5-7“ range formats may be used.

• A relative node-list may be specified as +1,2,3 or +1-2 and so forth. The + indicates that the node numbers are
relative to the process' set of allowed nodes.

• An inverse node-list can be specified as !1-3 or !1,2,3 and so forth. The ! indicates that all allowed nodes in the
current cpuset except these nodes should be used.

• If the keyword all is specified rather than a list of nodes it means use all the nodes in the current cpuset.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

18

Log File Option: -l and --log

– A log-file can be specified to record launch events by using the -l <log-file> or
--log=<log-file> option.

– The following events are logged:
– Process creation – logged by the parent process

– Process startup – logged by the child process

– Process exec – one of the exec* APIs was called to start a new executable image

– Normal process termination through the exit APIs (implicitly or explicitly)

– Thread creation – logged by the creating thread

– Thread creation – logged by the newly created thread

– Abnormal process termination events (e.g., killed by a signal) are not logged

– Thread termination events are not logged

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

Log File Sample

19

 Timestamp | Entry# | TID | PID | PPID | Node | CPU | Log Message | cmdline

 0.000155 | 1 | 48036 | 48036 | 47702 | 1 | 76 | initial exec start |
tst/sjn_test

 0.000680 | 2 | 48036 | 48036 | 47702 | 1 | 76 | Created PID 48039 |
tst/sjn_test

 0.000902 | 3 | 48039 | 48039 | 48036 | 2 | 30 | child start in fork() |
tst/sjn_test

 0.001131 | 4 | 48039 | 48039 | 48036 | 2 | 30 | exit() |
tst/sjn_test

 1.001081 | 5 | 48036 | 48036 | 47702 | 1 | 76 | Created PID 48040 |
tst/sjn_test

 1.001306 | 6 | 48040 | 48040 | 48036 | 3 | 45 | child start in fork() |
tst/sjn_test

 1.001539 | 7 | 48040 | 48040 | 48036 | 3 | 45 | _exit() |
tst/sjn_test

 2.001390 | 8 | 48036 | 48036 | 47702 | 1 | 76 | Created PID 48041 |
tst/sjn_test

 2.001586 | 9 | 48041 | 48041 | 48036 | 1 | 77 | child start in fork() |
tst/sjn_test

 2.001804 | 10 | 48041 | 48041 | 48036 | 1 | 77 | _Exit() |
tst/sjn_test

 3.001791 | 11 | 48036 | 48036 | 47702 | 1 | 76 | Created PID 48042 |
tst/sjn_test

 3.001996 | 12 | 48042 | 48042 | 48036 | 2 | 31 | child start in fork() |
tst/sjn_test

 3.002241 | 13 | 48042 | 48042 | 48036 | 2 | 31 | _exit() |
tst/sjn_test

 4.002100 | 14 | 48036 | 48036 | 47702 | 1 | 76 | Created PID 48043 |
tst/sjn_test

 4.002300 | 15 | 48043 | 48043 | 48036 | 3 | 46 | child start in fork() |
tst/sjn_test

 4.002519 | 16 | 48043 | 48043 | 48036 | 3 | 46 | _exit() |
tst/sjn_test

 5.002491 | 17 | 48036 | 48036 | 47702 | 1 | 76 | Created PID 48044 |
tst/sjn_test

 5.002683 | 18 | 48044 | 48044 | 48036 | 1 | 78 | child start in fork() |
tst/sjn_test

 5.002903 | 19 | 48044 | 48044 | 48036 | 1 | 78 | _exit() |
tst/sjn_test

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

20

Memfree Option: -m and --memfree

– The memory based launch policies additionally provide the -m <limit> or --memfree=<limit> option
to control when the launch policy should switch from round-robin to free memory based launching.

– <limit> must be a value from 0 to 100. The default value is 50. This value represents a free memory
percentage.

– Processes/threads will be initially be launched in a round-robin manner on the available nodes.

– When the amount of free physical memory on a node is less than the <limit> percentage threshold that
node will be removed from the available list of nodes on which new processes and threads can be
launched.
– If the removed node later has free memory greater than the <limit> percentage threshold the node will be added

back to the list of nodes on which new processes/threads can be launched.

– If/when the amount of free physical memory on all nodes is less than the <limit> percentage threshold
new processes/threads will be launched on the node that has the most free physical memory.

– Setting <limit> to 0 results in a pure round-robin launch policy.

– Setting <limit> to 100 results in a pure free memory based launch policy.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

21

Memfree Option: -m and --memfree

– NOTE:

– Physical memory is not allocated until a process/thread both allocates memory and initializes that
memory.

– Depending on how an application and it’s processes/threads are started this policy may not provide the
desired effect of launching based on free physical memory.

– If previously launched processes/threads have not yet allocated and initialized all of their memory future
process/thread launch decisions will be made with incomplete per node free memory statistics.

– Free memory based launch policies will not be effective when many processes/threads are created
simultaneously.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

22

Remove Data Files Option: -r and --remove-data-files

– ATX internally maintains an internal data file that is used to keep track of which Node/CPU should be used
for the next process or thread launch.

– It is possible that ATX could leave old unused data files around.

– By default, when ATX starts it looks for and removes any old unused internal data files from a previous
invocation of ATX that is no longer running.
– While these data files do not claim a lot of space you can use the –r or --remove-data-files option by itself to

remove any old unused internal data files.

– For example:

hpe-atx –r or hpe-atx –-remove-data-files

– This option does not provide output.

– If unused data files are found they are silently removed.

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

23

Write-by-Other Option: -w and --write-by-other

– By default ATX will create the <log-file> as well as an internally maintained data file with read/write
permissions for owner / group and read permission for other.
• i.e., 0664 or -rw-rw-r--

– Some applications may change their user or group ID causing access permission problems for the <log-
file> and the internal data file.

– The -w or --write-by-other option will cause the <log-file> and the internal data file to be created
with read/write permissions for owner, group, and other.
• i.e., 0666 or -rw-rw-rw-

– Note: the file-creation mode mask inherited from the parent process or set with the shell's umask
command may cause files to be created with more restrictive permissions.
– To ensure ATX creates files with the permissions specified above set the umask with the command:

 umask 0

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

24

Error File Option: -e and --error

– If any errors are encountered by ATX the error will be written to stderr.
– Run-time errors (not process startup errors) will also be written to the log-file if logging was specified.

– Some applications close stdout and stderr which can make error reporting difficult.

– The -e <error-file> or --error=<error-file> option will cause ATX to additionally write any error
it encounters to the file error-file.

– This file will only be created if ATX encounters an error launching the specified command or any of its
children.

– It is recommended to always use this option unless you know for certain that the specified command does
not close stdout and stderr.

25

ATX Command Line Examples

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

26

Examples

– hpe-atx -p rr_tree -- app args

• Run app with arguments args using the rr_tree process launch policy

– hpe-atx -p rr_tree -t ff_flat app args

• Run app with arguments args using the rr_tree process launch policy and the ff_flat thread launch policy

– hpe-atx -p rr_flat -c app args

• Run app with arguments args using the rr_flat process launch policy as well as a CPU launching within the node

– hpe-atx -p ff_tree -l log.txt app args

• Run app with arguments args using the rr_tree process launch policy and log launch operations to the file log.txt.

– hpe-atx -p ff_flat -n 1-3 app args

• Run app with arguments args using the ff_flat process launch policy and use nodes 1-3 to launch the process and threads
created by app.

– hpe-atx -p rr_flat -e errors.txt app args

• Run app with arguments args using the rr_flat process launch policy. Log any errors encountered by hpe-atx to the file
errors.txt.

27

ATX Error Handling and Constraints

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

28

Error Handling

– If ATX encounters an error while launching processes and threads it has three ways of handling the error:

1) Errors that occur before or during the launch of the specified command are treated as fatal startup errors and ATX
will terminate. These type of errors are usually errors related to bad parameters being passed to ATX.

2) Some errors are survivable errors that do not need to stop ATX or the specified command from continuing. An
example of a survivable error is if writing to the log file fails then logging is disabled, however, the specified
command and it's children will continue to run.

3) After the specified command has started, if ATX encounters a fatal error it will treat the error as a disable error. ATX
will disable itself in the process that encountered the error. All of the initial launch nodes will be used for that
process as well as any processes or threads it creates.

– This approach for surviving with reduced functionality and/or disabling ATX when an error is encountered
allows the user to cleanly shutdown the specified command at an opportune time (as opposed to
terminating the specified command).

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

29

Constraints

– ATX is not currently supported for use within a virtual guest environment

– ATX does not support 32-bit, setuid or setgid executables

• If encountered ATX will disable itself for that executable and any processes or threads it creates.

• The executable (and all of it’s children) will inherit the launch node or cpu from its creating process

• The executable is still allowed to run

• If a <log-file> was specified a log entry will be created to notify that this type of executable was encountered

– ATX does not recognize and reconfigure itself as cpus are placed in an offline state.

• If encountered ATX will disable the launch features in that process as well as any processes or threads it creates.

• The process will be allowed to use all of the initial launch nodes

• The process will continue to run

– If a cpu is placed in an online state after starting ATX, and the cpu launch option was specified, the new cpu
brought online will not be used by ATX.

– If an entirely new NUMA node of cpus is placed in an online state after starting ATX the new node brought online
will not be used by ATX.

30

ATX Tuning Thoughts

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

31

Quick Tuning thoughts…

– Run hpe-atx –l my_log.txt <cmd> (no launch policy specified) and look at the resulting log file to
understand the entire process tree, parent/child relationships, creation order, etc.

• Are there only processes created? If yes, there is no need to try the -t thread policies.

• Are there only threads created? If yes, there is no need to try the -p thread policies.

• Is there only one level of child processes? If yes, there is no need to try the rr_tree or ff_tree process policies.

• Answering questions like these will help arrow down which ATX options to try.

– For applications where there is only one executable to launch it’s pretty simple – just try the different launch
policies (with and without CPU launching).

– For applications where there are multiple executables to be started you might want to look at each executable
separately.

• It might be that each executable needs a different launch policy and should be launched by separate ATX invocations

• It might be that only some executables in an application need an ATX launch policy and others started normally

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

32

Quick Tuning thoughts…

– Run hpe-atx –l my_log.txt <cmd> (no launch policy specified) and look at the resulting log file to
understand the entire process tree, parent/child relationships, creation order, etc.

• Are there only processes? Only threads?

• Is there only one level of child processes? Or multiple levels?

• Answers to these questions will help arrow down which ATX options to try (-p vs -t options, tree s flat policies, etc)

– For applications where there is only one executable to launch it’s pretty simple – just try all the launch
policies (with and without CPU launching).

– For applications where there are multiple executables to be started you might want to look at each
executable separately.

• It might be that each executable needs a different launch policy and should be launched by separate ATX invocations

• It might be that only some executables in an application need an ATX launch policy and others started normally

33

Additional Resources

© Copyright 2015-2025 Hewlett Packard Enterprise Development LP. Patent pending. The information contained herein is subject to change
without notice.

34

For additional information
Publicly Available Resources

– HPE-ATX product page:
• http://downloads.linux.hpe.com/SDR/project/hpe-atx

– HPE-ATX download:

• HPE My License Depot
• My HPE Software Center -> HPE-ATX

• HPE Software Delivery Repository
• http://downloads.linux.hpe.com/SDR/project/hpe-atx/repo.html

– Documentation: Installing HPE-ATX
• http://downloads.linux.hpe.com//SDR/project/hpe-atx/Installing_HPE-ATX.pdf

– Documentation: Launching applications with HPE-ATX
• http://downloads.linux.hpe.com//SDR/project/hpe-atx/Using_HPE-ATX.pdf

• http://downloads.linux.hpe.com//SDR/project/hpe-atx/HPE-ATX_proof_points.pdf

– Demo Videos on the HPE Solution Demonstration Portal
• https://hpedemoportal.ext.hpe.com/search/HPE-ATX

http://downloads.linux.hpe.com/SDR/project/hpe-atx
https://downloads.linux.hpe.com/SDR/project/hpe-atx
https://myenterpriselicense.hpe.com/cwp-ui/product-download?productNumber=HPE-ATX&merchant=sw360_eval_customer&viewDetails=true
http://downloads.linux.hpe.com/SDR/project/hpe-atx/repo.html
https://downloads.linux.hpe.com/SDR/project/hpe-atx/repo.html
http://downloads.linux.hpe.com/SDR/project/hpe-atx/Installing_HPE-ATX_v_1.0.2.pdf
http://downloads.linux.hpe.com//SDR/project/hpe-atx/Installing_HPE-ATX.pdf
http://downloads.linux.hpe.com//SDR/project/hpe-atx/Installing_HPE-ATX.pdf
http://downloads.linux.hpe.com/SDR/project/hpe-atx/Using_HPE-ATX.pdf
http://downloads.linux.hpe.com/SDR/project/hpe-atx/Using_HPE-ATX.pdf
http://downloads.linux.hpe.com/SDR/project/hpe-atx/HPE-ATX_proof_points.pdf
https://hpedemoportal.ext.hpe.com/search/HPE-ATX
https://hpedemoportal.ext.hpe.com/search/HPE-ATX

Thank you

35

	HPE Application Tuner Express (HPE-ATX): Launching Applicatio
	What is HPE-ATX?
	ATX Launch Policies
	ATX Process and Thread Launch Policies
	ATX Launch Policy types
	Process Launch Trees
	Launch Policy: Sample parent/child tree
	Launch Policy: Process RR-Tree example
	Launch Policy: Process RR-Flat example
	Launch Policy: Process RR-PACK example
	Launch Policies and the Initial Thread
	Thread Launch Policies: Tree vs Flat
	CPU Launch Option
	ATX Command Line Options
	ATX Semantics
	ATX Semantics – License Options
	Initial Launch Nodes Option: -n and --nodes
	Log File Option: -l and --log
	Log File Sample
	Memfree Option: -m and --memfree
	Memfree Option: -m and --memfree (2)
	Remove Data Files Option: -r and --remove-data-files
	Write-by-Other Option: -w and --write-by-other
	Error File Option: -e and --error
	ATX Command Line Examples
	Examples
	ATX Error Handling and Constraints
	Error Handling
	Constraints
	ATX Tuning Thoughts
	Quick Tuning thoughts…
	Quick Tuning thoughts… (2)
	Additional Resources
	Slide 34
	Thank you

